Skip to content

Features Overview

Krewlyzer provides 11 standalone feature extraction commands plus a unified run-all pipeline.

Quick Comparison

Command Input Output Primary Use Case
extract BAM .bed.gz, .metadata.json Fragment extraction & GC factors
motif BAM .EndMotif.tsv, .MDS.tsv Fragmentation patterns
fsc BED.gz .FSC.tsv Copy number detection
fsr BED.gz .FSR.tsv Tumor fraction estimation
fsd BED.gz .FSD.tsv Size distribution analysis
wps BED.gz .WPS.tsv.gz Nucleosome positioning
ocf BED.gz .OCF.tsv Tissue of origin
region-entropy BED.gz .TFBS.tsv, .ATAC.tsv Regulatory region analysis
uxm Bisulfite BAM .UXM.tsv Methylation deconvolution
mfsd BAM + VCF/MAF .mFSD.tsv Mutant vs wild-type sizes
run-all BAM All outputs Complete analysis

Workflow Diagram

flowchart LR
    BAM[BAM File] --> extract
    extract --> BED[.bed.gz]
    BAM --> motif

    BED --> fsc
    BED --> fsr
    BED --> fsd
    BED --> wps
    BED --> ocf

    BAM --> mfsd
    VCF[VCF/MAF] --> mfsd

    BS_BAM[Bisulfite BAM] --> uxm

    subgraph outputs[Output Files]
        fsc --> FSC[.FSC.tsv]
        fsr --> FSR[.FSR.tsv]
        fsd --> FSD[.FSD.tsv]
        wps --> WPS[.WPS.tsv.gz]
        ocf --> OCF[.OCF.tsv]
        motif --> MOTIF[.EndMotif.tsv]
        mfsd --> MFSD[.mFSD.tsv]
        uxm --> UXM[.UXM.tsv]
    end

    BED --> tfbs[region-entropy]
    tfbs --> TFBS[.TFBS.tsv / .ATAC.tsv]
Use mouse to pan and zoom

Feature Categories

Fragmentation Features

Feature Biological Signal Clinical Application
FSC Fragment coverage by size class CNV detection, copy number profiling
FSR Short/Long fragment ratios Tumor fraction estimation
FSD Size distribution per arm Nucleosome patterns, ctDNA detection

Nucleosome & Chromatin

Feature Biological Signal Clinical Application
WPS Nucleosome protection scores Tissue of origin, gene regulation
OCF Open chromatin fragmentation Tissue-specific cfDNA detection
Motif End motif diversity (MDS) Fragmentation patterns, cancer detection
Region Entropy TFBS/ATAC size distribution Regulatory element alterations, cancer detection

Specialized

Feature Biological Signal Clinical Application
mFSD Mutant vs wild-type sizes MRD monitoring, ctDNA quantification
UXM Fragment methylation (U/X/M) Cell-type deconvolution

Choosing Features

For Cancer Detection

krewlyzer run-all sample.bam -r hg19.fa -o output/
# Focus on: FSR (tumor fraction), FSC (CNV), Motif (MDS)

For Tissue of Origin

# Run WPS and OCF
krewlyzer wps -i sample.bed.gz -o output/
krewlyzer ocf -i sample.bed.gz -o output/

For MRD Monitoring

# Compare mutant vs wild-type fragment sizes
krewlyzer mfsd -i sample.bam -V variants.vcf -o output/

For Methylation Deconvolution

# Requires bisulfite sequencing BAM
krewlyzer uxm bisulfite.bam -o output/

Common Options

All feature commands share these core options:

Option Description
-o, --output Output directory (required)
-s, --sample-name Override sample name
-G, --genome Genome build: hg19/hg38
-t, --threads Thread count (0=all)
-v, --verbose Enable verbose logging
-f, --format Output format: tsv, parquet, json

See individual feature pages for command-specific options, or JSON Output for format details.


Additional Resources

  • JSON Output - Unified JSON for ML pipelines (--generate-json)
  • Panel Mode - MSK-ACCESS and targeted panel analysis (--assay)
  • PON Building - Creating cohort baselines for z-score normalization